表計算ソフトエクセルの基礎数学教育への活用方法の紹介

The introduction of the methods for computation of fundamental mathematics by Excel.

玉木 正一 Masakazu TAMAKI

1. 数学の書式

現在のような数学の式の書き方は、中世ヨーロッ パに始まったと言われている。当時は商業簿記が 急速に発展して、貸借表などの会計的な技術も発 展した。等号の様に両辺のバランスを重視する行 き方である。貸し方、借り方の2カ所ではあるが、 データの連結が明示されている。それまでの、論 理的な証明、推論とは違った、フィードバックの 視点が確立されたのである。

エクセルでは、データの連結は縦横無尽で、初期 の貸借表とは比較にならない。推論、観察の奥が 深いのである。この奥の広さを、数学の抽象概念 の心理的な理解に使っていく事は出来ない物であ ろうか。(概念の習得こそ教育の主要部分であり、 いかに難しくともやり遂げねばならない。) この為のエクセルの便利の良い使用方法がある。 ここでいくつかを紹介していきたい。

2. 分数計算、除法

普通の分数計算が出来ない大学生がいるそうであ る、彼らといえども電卓で四則計算が出来る。通 分などデータの連結の処理が上手くできないので あろう。分数式になれば、文字式の係数も考えな ければならない。エクセルで、分数式のデータの 連結を計算してしまえば、この様な困難は大幅に 減少する。人間の得意な事は、パターン認識であ る。機械には難しい、顔の表情を読み取ってしま う事は、元々人間に備わった能力である。機械に これをアシストさせれば良い。

先ずは、組み立て除法で1次式の計算をする。

$$(x^{4}-2x^{3}-20x^{2}+23x+13) \div (x-5)$$

=x^{3}+3x^{2}-5x-2.....3

授業で習うのは図1の形式であるが、これを係数

だけ、書き出したのが、組み立て除法である。こ れを、エクセルで行うと、

	AVERAG	iΕ	▼ × √	/ = +C	4*\$ A\$2		
	A	В	С	D	Е	F	G
1							
2	5		1	-2	-20	23	13
3				+C4 * \$	A\$2		
4			1				
Б							

図2

更に続けると

D3 🔽				= =+C4*\$A\$2			
	A	В	С	D	E	F	G
1							
2	5		1	-2	-20	23	13
3				5	15	-25	-10
4			1	3	-5	-2	3
Б							

図 3

商の係数は最下段にあり1,3,-5,-2で余 りは3である。この係数の裏に、隠れている文字 式を認識する事、それが、抽象概念を習得する事 になる。

これを続けるとテーラー展開となる。

1						
2	5	1	-2	-20	23	13
3			5	15	-25	-10
4		1	3	-5	-2	3
5			5	40	175	
6		1	8	35	173	
2	5	1	-2	-20	23	13
3			5	15	-25	-10
4		1	3	-5	-2	3
5			5	40	175	
6		1	8	35	173	
7			5	65		
8		1	13	100		
9			5			
10		1	18			

図4 図5

影の部分を繰り返し下に貼り付けて行くと、図5 の最も下の段の結果を得る。 これは、

 $\begin{aligned} x^{4-} 2x^{3-} 20x^{2} + 23x + 13 \\ = (x-5)^{4} + 18(x-5)^{3} + 100(x-5)^{2} + 173(x-5) + 3 \\ & \boxtimes 6 \\ \\ O 様 に テ - ラ - 展開 されている。$ 差分方程式でも同様の計算を行う。 $<math display="block">\begin{aligned} \Delta x^{(3)} = (x+1)(x+1-1)(x+1-2) - x(x-1)(x-2) \\ = 3x(x-1) = 2x^{(2)} \\ n^{2} = n(n-1) + n \\ x = 1 \\ \sum_{x=1}^{n} x^{2} = \frac{1}{3}(n+1)n(n-1) + \frac{1}{2}(n+1)n \\ = \frac{1}{6}n(n+1)(2n+1) \end{aligned}$

図7 *印の展開を利用して、和分公式を使う。

degree	2	1	0		
1	1	0 1	0 1		
2	1	$\frac{1}{2}$	1		
	1	3			
$n^{3}=n^{(3)}+$	$-3n^{(2)}+n$				
=(n - 0)(n - 1)(n -	2)+3	(n-0)	(n-1)-	+(n - 0)
$\sum_{x=1}^{n} x^{3} = \frac{1}{4} (r$	n+1)(n-	0)(n·	-1)(n-	- 2)	
$+\frac{3}{3}(n+1)($	n - 0) (n -	- 1) +-	$\frac{l}{2}(n+l)$!)n	
$=\frac{1}{4}n^4 + \frac{1}{2}n$	$^{3}+\frac{1}{4}n^{2}$				

図8

各和分を合計すればよいのである。サマンドを階 乗の差分に分解して、合計すればよい。

3. エクセルの入力

ここでエクセルのデータ入力法について見てみよ う。エクセルは、連続した数値データの入力、修 正に優れている。この点だけでも、専門の数式処 理ソフトより実用的である。 2での最初の組み立て除法のデータは、マウスで 入力領域を反転させておいて、白地の部分に入力 し、リターンキーを押す。自動的に入力領域が移 動する。

	A	В	С	D	E	E F	G	Н		
1										
2	5		1	-2	-20	23	13			
3				5	15	-25	-10			

(ノートパソコンを利用している方には、別にテ ンキー又はフルサイズキーボードを使用すること をお勧めする。)

作業もコピーが出来る、下のように

2			0	0	0	
3	1		1	1	1	
4		1	1	1	1	
5	ය		2	6		
6		1	3	7		
			図10			

コピー部分を反転させて、Ctrl+Cでクリップボー ドに取り込む、ペーストの開始点(太十字のセル) をクリックして、Ctrl+Vでペーストする。 数値データをペーストするときには、右ボタンを 押し、「形式を選択して貼り付け」の数値を選ぶ

;	形式を選択して貼り付け	
	貼り付け C すべて(A) C 数式(E) @ 値(V) C 書式(<u>I</u>)	 ○ コメント(Q) ○ 入力規則(N) ○ 罫線を除くすべて(X) ○ 列幅(W)

図11

4. 部分分数分解(分母が1次式の積の場合) 基礎数学でも現れ、分数式の積分でも使う重要な 計算に、部分分数分解がある。 例えば次のような物である。

$$\frac{x^{2}+12x-61}{(x-3)(x-5)(x+1)} = \frac{a}{x-3} + \frac{b}{x+1} + \frac{c}{x-5}$$
両辺をx-3倍して、x=3を代入する。

$$\frac{x^{2}+12x-61}{(x-5)(x+1)} = a + \frac{b(x-3)}{x+1} + \frac{c(x-3)}{x-5}$$

$$\frac{x^{2}+12x-61}{(3-5)(3+1)} = \frac{-16}{-8} = 2 = a$$

左辺の分子のxへの代入が意外に大変であるが、 組み立て除法の右端に現れる-16が結果になる。

1					
2	3	1	12	-61	
3			3	45	
4		1	15	-16	
Б					2

図13

あとは3を、-1,5と替えて行くだけである。 分母への代入も必要なことに注意する。

5. 分母が一種類の1次式の累乗の場合

これは、2で述べたテーラー展開と同じであるが、 書き順は前からになる。

図14

左から、1, 3、-2、-1が分子になる。

5. 組み立て除法の拡張

多項式は、幾つかの1次式と2次式の積に分解 できる。(代数学の基本定理)よって、組み立 て除法には、2次式への拡張が必要になる。 その為にはモニックと言う概念が必要になる。 最高次の項の係数が1の多項式をモニックという。 従来の組み立て除法もその一つである。分母が モニックでない場合は、最高次の係数で分母分 子を割りモニックにすればよい。

図15 上の除法に対しては、分母の第2項以下の符号 を反対にした係数(-2,1)を用いて組み立 て除法を拡張する。下のようになる。

	A	В	С	D	E	E I	G	
1				1	5	-4	1	
2	-2				-2	-6		
3		1				1	3	
4				1	3	-9	4	
Б								

図16

斜めに係数ベクトルの倍数(-2,1)、(-6,3) が配置されていて、セルG2が削除されているこ とに注意して欲しい。余り(分子)は後の2セ ルの-9x+4となる。

図17

の様に、2次式累乗型の分母に対しても、部分 分数分解が可能である。

6. 山辺の方法への拡張

今までは多項式で割り算をしてきたが、演算子 の1次式での除法を考えてみたい。これは、1 階の定数係数線形微分方程式の特殊解を求める ことと同じ事である。

(<i>D</i> + <i>l</i>) <i>y</i> =	$=x^3+5x^2-4x+1$
余関数	$y_0 = c e^{-x}$
特殊解	$y_1 = \frac{1}{1+D}(x^3+5x^2-4x+1)$
一般解	$y = y_0 + y_1$

特殊解に使う組み立て除法は

	A	D	0				
	degree)	3	2	1	0	
2			1	5	-4	1	
3	-1	D		=C4 * \$/	A\$3 ∗ C1		
1			1				

図19

の様に、	degree	の行が付け加わる。	この行の値
もかけ算	をする。	4行目に計算結果な	が出る。

	L.A	U.U.	0	U	L		u.			
1	dagree	3	3	2	1	0				
2			1	5	-4	1				
З	-1	D		-3	-4	8				
4	L		1	2	-8	. 9				
Б										
	$y_1 = x^3 + 2x^2 - 8x + 9$									

図20

これは、指数関数と多項式の積の積分にも利用で きる。その例を上げてみよう。

∫(x ³ +.	$2x^2 - 3x$	c +5) a	$e^{-x}dx =$	$\frac{1}{D}(x^3+$	$-2x^2 - 3x$	+5) e ⁻	x
=e ⁻	$x \frac{1}{D}$	$\frac{1}{-1}(x^3)$	$+2x^{2}$	- 3x +5)	$=e^{-x}\frac{1}{1}$	$\frac{l}{D}(-x^{\beta})$	$-2x^{2}+$	3x - 5)
		A	В	С	D	E	F	- (
	1	degree	э	3	2	1	0	
	2			-1	-2	3	-5	
	3	1	D		-3	-10	-7	
	4			-1	-5	-7	-12	
	-					-		
1	!=(-	$x^{3}-5x$	2 - 7x	- 12) e ^{- y}	r			

図21

これは、特殊解の解法と全く同じである。

2次以上の微分方程式に対しては、部分分数の方 法と、2次式への拡張の方法と2種類ある。ここ では、部分分数分解を応用した方法を用いてみよ う。エクセルも分数表示ができるので、今回は分 数表示する。但し、帯分数であることを注意され たい。

(D+1)(L	$(y) = 3x^3 + 2x^2 - 5x + 1$
余関数	$y_0 = c_1 e^{-x} + c_2 e^{-2x}$
特殊解	$y_1 = \frac{1}{(D+1)(D+2)} (3x^3 + 2x^2 - 5x + 1)$
	$= \left(\frac{1}{D+1} - \frac{1}{D+2}\right) (3x^3 + 2x^2 - 5x + 1)$

⊠22

これは少々複雑になる。先ず分母を定数が1のD の1次式にする。

	A	D	U	U	E		u	
1		1	D	3	2	1	0	
2	分母	1	1	3	2	Ъ	1	
3	α	-1	D	3	2	-5	1	
								_

「分母」というのは分母の係数、「α」は組み立

て除法で使われるαである。全体を分数モードに して、表を2枚コピーする。コピーの仕方は、 ctrlキーを押したままシートのタグをマウスでタ グの外に移動するだけである。

A I		U		E	F	G	Г
	1	D	3	2	1	0	
母	1	1	3	2	Ъ	1	
	-1	D	3	2	-5	1	
				-9	14	-9	
			3	-7	9	-8	
N\ <u>She</u>	et î .v	Sheet	1 (3) / S	heet1 (2)/She	et2/S	• [
	₽ ₽ N\She	1 ♣ 1 −1 N Sheet 1,	1 D □ 1 D □ 1 1 □ 1 D □ 1	1 D 3 □ 3 N Sheet (3)/S	1 D 3 2 ↓ 1 1 3 2 −1 D 3 2 −9 3 −7 N Sheett (3)/Sheet1 (3)	1 0 3 2 1 1 1 3 2 -5 -1 0 3 2 -5 -1 0 3 2 -5 -9 14 3 -7 9 N Sheett (Sheet1 (3)/Sheet1 (2)/Sheet1 (2)/S	1 0 3 2 1 0 1 1 3 2 -5 1 -1 D 3 2 -5 1 -1 D 3 2 -5 1 -9 14 -9 3 -7 9 -8 N Sheet1 (3)/Sheet1 (2)/Sheet2/S

ー度成功すれば、二度目以降は容易である。この やり方には慣れて欲しい。

		2	D	3		2				0	
2	分母	2	1	3		2		-5		1	
3	α	- 1/2		1	1/2	1		-2	1/2		1/2
4						-2	1/4	1	1/4		5/8
5	商			1	1/2	-1	1/4	1	1/4	Ф <u>1</u>	1/8
6											
				—	~ -						

図25

分母の定数を2にしたので、分母分子が2で割られ、計算は表のようになる。シート1(3)を開き、 最後にシート間の引き算を対応するセルに対して 行うと、下段に特殊解を得る。

図26

部分分数分解法で解くにはシートの串刺し計算が 必要になる。

拡張した山辺の方法を、5で行ったように分母を Dの2次式まで拡張すれば、そのままで解を得る が計算は横方向ににかなり長くなる。

7. エクセルの本来の使い方、統計への応用

大日本図書「確率統計」にある、殆ど全ての問題、 例題は挿入→関数、又はツールバーの関数ウィザ ードより引き出す→統計関数を呼び出す→マウス で、対象となるデータ領域をクリックする→解を 得る。但し、Averageなどで、統計学の正規の 用語のMean Valueを表していたり、習慣的な 用法を用いているので注意する必要がある。 例を上げてみよう。「確率統計」P69 問3では 間3 次の表は,10名の学生に数学のテストを2回 実施した結果の成績である。1回目の得点Xと2回 目の得点Yの相関係数を求めよ。

学生番号	1	2	3	4	5	6	7	8	9	10
1回目	47	77	96	43	71	90	55	64	60	80
2回目	30	100	57	48	85	95	53	69	58	75

図27

相関係数を計算するウィザードを引き出して、ク リックする。

	A	В	C	U	E	F	G	н	1	J	K	L	
4		学生番号	1	2	3	4	5	6	7	8	9	10	
Б		108	47	77	96	43	71	90	55	64	60	80	
β		208	30	100	57	48	85	95	53	69	58	75	
7													
В		相関係数	=	C5:L	_5)								
þ													
0) CORREL												
1	配列1 C5:L5								<u> </u>	{47,77	,9		
2	■ 「 百己列2										s =		
3			N										

図28

学生番号	1	2	3	4	5	6	7	8	9	10
108	47	77	96	43	71	90	55	64	60	80
208	30	100	57	48	85	95	53	69	58	75
相関係数	=	0.65	6007							

図29

とセルに0.650071568759793を得る。

これを電卓で計算すると入力ミス、エラー表示、 など相当のストレスが伴う。

エクセルでも少々工夫が必要な問題に2次元の独 立性の検定がある。同じく「確率統計」p123の 例題2を見てみる。

[例題2] 200人の有権者を任意抽出して,A党, B 党, C党の支持者を調べたら,表のようになった。 40歳未満と40歳以上とで政党の支持率に違 いがあるといってよいか。

	A党	B 党	C党	計
40歳未満	40	36	20	96
40歳以上	59	26	19	104
計	99	62	39	200

図30

これは全く同じ表を3枚作り、2枚目は期待度数 表、3枚目は統計量

のに用いる。表の作成には、Crtl+マウスボタン でシートタグをドラッグ、デッドコピーを行う。

	A	В	С	D	E	
1		A党	B党	C党	Ħ	
2	40歳未満	40	36	20	96	
3	40歳以上	59	26	19	104	
4	計	99	62	39	200	
ц <u>–</u>	▶ ▶ /She	et2/Sh	eet2 (2)`	<u>Sheet2</u>	<u>(3)</u> /She	eť.

図31

2枚目を期待度数表、3枚目を、変量T計算のサ マンド(被和数)の表にする。

	A	В	С	D	E	
1	期待度数	A党	B党	C党	計	
2	40歳未満	47.52	29.76	18.72	96	
3	40歳以上	51.48	32.24	20.28	104	
4	計	99	62	39	200	
	▶ N/She	et2∖Sh	eet2 (2),	/Sheet2	(3)7SF	•

	Δ	в			F	
	~					
1	sumand	A党	B党	C党	計	
2	40歳未満	1.19	1.3084	0.0875	96	
3	40歳以上	1.0985	1.2077	0.0808	104	
4	計	99	62	39	200	
5						
6	Т	=	4.9729	65643		
	▶ N/She	et2/Sh	eet2 (2) \	<u>Sheqt2</u>	<u>(3)/SF</u>	4

図32

クリックとΣボタンを用いて計算でき、独立性の 検定を短時間の作業で行うことが出来る。また、 表の規模に関係しない。

8. 関数論、微分積分学のグラフの作成

「Excelでやさしく学ぶ微分積分」(室 淳子、 石村 貞夫著)では、エクセルで数学のグラフを 描く際は散布図の使用を勧めている。

- 5	-4	- 3	- 2	- 1	0	1	2	3	4	5
25	16	9	4	1	0	1	4	9	16	25

対応表からグラフを作成すると、図33のように なる。数学のグラフとしても見苦しくはない。 更に差分の表を作りグラフにすると

図34

となり、微分(差分)がとなる様子が視覚的に も実現できる。勿論数式処理ソフトでも実現は 容易であるが、表から概形を描くという意味が なくなる。

積分を和分で近似すると、グラフは

朧気ながら、不定積分 $y = \frac{1}{3}x^3 + c$ の形が見えて

くる。平行移動等は、数値表を見るだけでは感覚 的な理解は難しい。この様なグラフの割付を自働 作成してくれることは有り難い。

9. 線形代数学・ベクトルの作図

多くの教科書に、ベクトルを作図せよと言う問題 が出ている。果たして、作図する用紙の事を考え ているのであろうか疑問に思うことも多い。

エクセルの場合、上記の散布図を使うと容易にベ クトルの軸の部分は何本でも作成できる。流石に 矢印の先端までは上手く作図できないが、想像力 で補って欲しい。

問題 次の位置ベクトルを作図しなさい。

(2,3)、(-2,1)、(2,-2)などでは、原点(0,0)を加えてグラフにすると下のようになる。

図36

左側の位置ベクトルデータを線分表示してくれる。 データを変化させると線分も変更される。矢印と の対応が理解しやすく、面白い。勿論このデータ 列に一次変換を施すことも可能である。それには 行列の乗法の計算が必要になる。

10. 行列の乗法、逆行列、行列式

エクセルでは、行列の計算を関数を用いて計算す る。キー入力する上での注意が幾つか必要になる。 例として3×3行列の逆行列の入力についてみて みよう。

図37

左上点線で囲まれた行列の逆行列を右上黒く塗り つぶされた部分に表示するのだが、そのままOK ボタンやレリターンキーを押してしまうと白く表 示されているセルだけに値が入る。全体に出力す るには、Ctrl+shiftキーを押したままOKボタン を押す。(リターンキーは押さない)分数表示に しておけば、通常見る形になる。

5	1	-3			23/128	1	1/128	[9/128	
2	2	3		-	11/128	1	7/128		21/128	
1	5	-4		-	1/16		3/16	-	1/16	
										-

右側の塗りつぶされた部分に逆行列が表示される。 行列の積も関数ウィザードを使って、Mmultiを 呼び出し、同様に使う。配列ウィンドウが2カ所 出るが上の段が左側の行列で、下の段が右側の行 列である。2×2行列について例を見よう。

図39

1	3	4	-1	10	8
2	4	2	3	16	<u> 10 </u>

図40

逆行列を作成する問題では、計算課程を効率よく 出力することが重要になる。

例として、行基本変換を使って逆行列を求めてみ よう。

大日本図書「線形代数(新井一道他著)」p78に 次のような例題がある。

		(1	$^{-2}$	0)	
[例題3]	行列 A =	1	1	-1	の逆行列を求めよ.
		(-5	5	2)	

図41

この本では、右側に単位行列を加えた拡大行列に 対して、行基本変換を行う。前半が単位行列にな るよう操作する。その結果、右半分に逆行列が出 力される。教科書の行基本変換はやや直感的似す ぎる。これをエクセルで行うと、操作の流れに論 理性が出てくる。

操作の基本思想は行列を左側から掛けると、その 名の通り、左半分、"行"をコントロールするこ とになる。右から掛けると、右半分の"列"をコ ントロールすることになる。結果の拡大行列にさ らに左から行基本変形の行列を掛ければよい。

μ.										
	1	0	0	1	4	2	1	0	0	
	-2	1	0	2	1	3	0	1	0	
	-4	0	1	4	2	2	0	0	1	
	1									

図42

左の行列は単位行列の第一列の、1,0,0を拡

大行列の第一列124の(対角成分以外の)成分 を反対符号にした、行基本変形の行列である。

1		4/7	0	1	4	2	1	0	0
0	-	1/7	0	0	-7	-1	-2	1	0
0	-2		1	0	-14	-6	-4	0	1
1		0	0.35	1	0	1.4	-0	0.6	0
0	1		0	0	1	0.1	0.3	-0	0
0		0	-0.25	0	0	-4	0	-2	1

図43

上段の行基本変形の行列、4/7,-1/7,-2は拡大 行列の2列目を対角化するための列である。下の 行列の第3列は拡大行列の第3列を整頓するため の列である。結果は次のようになる。

1	0	0.029	-0	-0	0.4	-0.1	-0.1	0.35	
0	1	0	0.3	-0	0	0.29	-0.2	0.04	
0	0	1	0	0.5	-0	0	0.5	-0.3	

図44

左側が行基本変換の結果で右が逆行列である。こ の結果も領域のコピーを繰り返すことと、列の成 分の変更することが出来て容易に得られた。

11. 固有値、固有ベクトル、対角化

行列の固有値、固有ベクトルの問題は適当に行列 を作成して、固有方程式を作成するところまでは 順調に進むが、その解や、固有ベクトルとなると、 複雑な値になり、適当な教材とはならない。そこ で、固有値、固有ベクトルを決定して、対角化行 列、逆行列を用意して、教材となる行列を作る。

図45

結果の行列が分数式を含むときは、分母の最小公 倍数をAに掛けておけばよい。

12. 関数の数値計算、ホーナーの方法

マクローリン展開への数値の代入により三角関数 指数関数などの値を求めることができるが、実際 には累乗計算が大変で、目の前での(黒板、OH Pへの投影)計算表示の実演はほとんど行われて いない。

ここではエクセルを使い、代入計算をしてみよう。

テーラー展開はa _n f ⁽ⁿ⁾ (0)を用いて下のように書ける
$f(x) = a_0 + \frac{a_1}{1!} x + \frac{a_3}{3!} x^3 + \frac{a_4}{4!} x^4 + \frac{a_5}{5!} x^5 + \frac{a_6}{6!} x^6 + \frac{a_7}{7!} x^7$
$=a_{0}+\frac{x}{1}\left(a_{1}+\frac{x}{2}\left(a_{2}+\frac{x}{3}\left(a_{3}+\frac{x}{4}\left(a_{4}+\frac{x}{5}\left(a_{5}+\frac{x}{6}\left(a_{6}+\frac{x}{7}\left(a_{7}\right)\right)\right)\right)\right)\right)\right)$
図46

従って後ろの括弧から代入していけばよい。 例として

sin(0.5)=0.47942553860420301 を計算してみよう。

		D^n(sin(x))	0.5
		x=0	
	9	1	0.05555556
	8	0	0.00347222
	7	-1	-0.0711806
	6	0	-0.0059317
	5	1	0.09940683
	4	0	0.01242585
D	3	-1	-0.1645957
1	2	0	-0.0411489
2	1	1	0.47942554
3	0	0	0.47942554

図47

左2列は最初に作成するときは昇順であるが代入 直前に、降順に並べ替えた。

図48

最下段では7桁まで一致している。 このような関数はエクセルに組み込まれているの で、実用に供するには、この様な代入の作業は必 要ないが、教材作成の立場で見るとき、興味深い 物である。

この他、FFT(高速フーリエ変換)、ガウス・ ルジャンドル積分による数値計算などは有用であ り、有名であるが、教材作成の立場を逸脱してい る。

13. まとめ

1で述べたように数学のリテラシーは長い時間を 掛けて発展してきた。その間、数学は唯一の科学 の言語であった。科学者の選抜にも使われて来た。 しかし、近年コンピュータ言語も同様の論理性を もち、数学が唯一の表現手段とは言えなくなって 来ている。指数や、関数の累乗、根号等はプログ ラム言語の方が優れている。x²2などの記法の 方が、あちらこちら動き回る数学の表記より、論 理的にも優れている。矛盾を含んだ自然言語から 出発した数学よりも、表から出発した、エクセル の方が、パターン認識に優れ、正確な判定を出し やすい。数学は、この明解であると言う点を取り 入れていかなければならないであろう。

参考文献

「確率統計」田河生長、玉木正一他 大日本図書 「新訂線形代数」新井一道著 大日本図書 「Excelでやさしく学ぶ微分積分」

> 室 淳子、石村 貞夫著 東京図書